Semana 17 y 18

1. Leyes de la probabilidad 2. Teorema de Bayes 3. Esperanza y varianza 4. Distribución binomial 5.Distribución de Poisson 


Leyes de la probabilidad

La probabilidad es un método por el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados posibles, bajo condiciones suficientemente estables. La teoria de la probabilidad se usa extensamente en áreas como la estadistica, la fisica, la matematicas, las ciencias y la filosofia para sacar conclusiones sobre la probabilidad discreta de sucesos potenciales y la mecánica subyacente discreta de sistemas complejos.

La probabilidad constituye un importante parámetro en la determinación de las diversas casualidades obtenidas tras una serie de eventos esperados dentro de un rango estadístico.

Existen diversas formas como método abstracto, como la teoria de dempster y la teoria de la relatividad numerica, esta última con un alto grado de aceptación si se toma en cuenta que disminuye considerablemente las posibilidades hasta un nivel mínimo ya que somete a todas las antiguas reglas a una simple ley de relatividad.

La probabilidad de un evento se denota con la letra p y se expresa en términos de una fracción y no en porcentajes, por lo que el valor de p cae entre 0 y 1. Por otra parte, la probabilidad de que un evento “no ocurra” equivale a 1 menos el valor de p y se denota con la letra q

Regla de la adició

La regla de la adición o regla de la suma establece que la probabilidad de ocurrencia de cualquier evento en particular es igual a la suma de las probabilidades individuales, si es que los eventos son mutuamente excluyentes, es decir, que dos no pueden ocurrir al mismo tiempo.
P(A o B) = P(A) U P(B) = P(A) + P(B) si A y B son mutuamente excluyente. P(A o B) = P(A) + P(B) − P(A y B) si A y B son no excluyentes.
Siendo: P(A) = probabilidad de ocurrencia del evento A. P(B) = probabilidad de ocurrencia del evento B. P(A y B) = probabilidad de ocurrencia simultánea de los eventos A y B.

Regla de la multiplicación

La regla de la multiplicación establece que la probabilidad de ocurrencia de dos o más eventos estadísticamente independientes es igual al producto de sus probabilidades individuales.
P(A y B) = P(A B) = P(A)P(B) si A y B son independientes. P(A y B) = P(A B) = P(A)P(B|A) si A y B son dependientes
La regla de Laplace establece que:
  • La probabilidad de ocurrencia de un suceso imposible es 0.
  • La probabilidad de ocurrencia de un suceso seguro es 1, es decir, P(A) = 1.
Para aplicar la regla de Laplace es necesario que los experimentos den lugar a sucesos equiprobables, es decir, que todos tengan o posean la misma probabilidad.
  • La probabilidad de que ocurra un suceso se calcula así:
P(A) = Nº de casos favorables / Nº de resultados posibles
Esto significa que: la probabilidad del evento A es igual al cocientedel número de casos favorables (los casos dónde sucede  A) sobre el total de casos posibles.-
-Aplicacion:
Dos aplicaciones principales de la teoría de la probabilidad en el día a día son en el análisis de riesgo y en el comercio de los mercados de materias. Los gobiernos normalmente aplican métodos probabilísticos en regulacion ambiental donde se les llama “analisis de vias de dispercion”, y a menudo miden el bienestar usando métodos que son estocásticos por naturaleza, y escogen qué proyectos emprender basándose en análisis estadísticos de su probable efecto en la población como un conjunto. No es correcto decir que la estadistica está incluida en el propio modelado, ya que típicamente los análisis de riesgo son para una única vez y por lo tanto requieren más modelos de probabilidad fundamentales, por ej. “la probabilidad de otro 11-S”. Una ley de numeros pequeños tiende a aplicarse a todas aquellas elecciones y percepciones del efecto de estas elecciones, lo que hace de las medidas probabilísticas un tema político.
Un buen ejemplo es el efecto de la probabilidad percibida de cualquier conflicto generalizado sobre los precios del petróleo en Oriente Medio – que producen un efecto dominó en la economía en conjunto. Un cálculo por un mercado de materias primas en que la guerra es más probable en contra de menos probable probablemente envía los precios hacia arriba o hacia abajo e indica a otros comerciantes esa opinión. Por consiguiente, las probabilidades no se calculan independientemente y tampoco son necesariamente muy racionales. La teoría de las fiansas conducyuales surgió para describir el efecto de este pensamiento de grupo en el precio, en la política, y en la paz y en los conflictos.
Se puede decir razonablemente que el descubrimiento de métodos rigurosos para calcular y combinar los cálculos de probabilidad ha tenido un profundo efecto en la sociedad moderna. Por consiguiente, puede ser de alguna importancia para la mayoría de los ciudadanos entender cómo se calculan los pronósticos y las probabilidades, y cómo contribuyen a la reputación y a las decisiones, especialmente en una democracia.
Otra aplicación significativa de la teoría de la probabilidad en el día a día es en la fiabilidad. Muchos bienes de consumo, como los automoviles y la electrónica de consumo, utilizan la teoria de la fiabilidad en el diseño del producto para reducir la probabilidad de avería. La probabilidad de avería también está estrechamente relacionada con la garantia del producto.
Se puede decir que no existe una cosa llamada probabilidad. También se puede decir que la probabilidad es la medida de nuestro grado de incertidumbre, o esto es, el grado de nuestra ignorancia dada una situación. Por consiguiente, puede haber una probabilidad de 1 entre 52 de que la primera carta en un baraja sea la J de diamantes. Sin embargo, si uno mira la primera carta y la reemplaza, entonces la probabilidad es o bien 100% ó 0%, y la elección correcta puede ser hecha con precisión por el que ve la carta. La física moderna proporciona ejemplos importantes de situaciones determinísticas donde sólo la descripción probabilística es factible debido a información incompleta y la complejidad de un sistema así como ejemplos de fenómenos realmente aleatorios
El teorema de Bayes

 en la teoría de la probabilidad, es una proposición planteada por el filósofo inglés Thomas Bayes (1702-1761)1​ en 1763,2​ que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A.
En términos más generales y menos matemáticos, el teorema de Bayes es de enorme relevancia puesto que vincula la probabilidad de A dado B con la probabilidad de B dado A. Es decir, por ejemplo, que sabiendo la probabilidad de tener un dolor de cabeza dado que se tiene gripe, se podría saber (si se tiene algún dato más), la probabilidad de tener gripe si se tiene un dolor de cabeza. Muestra este sencillo ejemplo la alta relevancia del teorema en cuestión para la ciencia en todas sus ramas, puesto que tiene vinculación íntima con la comprensión de la probabilidad de aspectos causales dados los efectos observados.

Esperanza y varianza
Los nombres de esperanza matemática y valor esperado tienen su origen en los juegos de azar y hacen referencia a la ganancia promedio esperada por un jugador cuando hace un gran número de apuestas.
Si la esperanza matemática es cero, E(x) = 0, el juego es equitativo, es decir, no existe ventaja ni para el jugador ni para la banca.
Ejemplos
Si una persona compra una papeleta en una rifa, en la que puede ganar de 5.000 € ó un segundo premio de 2000 € con probabilidades de: 0.001 y 0.003. ¿Cuál sería el precio justo a pagar por la papeleta?
E(x) = 5000 · 0.001 + 2000 · 0.003 = 11 €
Un jugador lanza dos monedas. Gana 1 ó 2 € si aparecen una o dos caras. Por otra parte pierde 5 € si no aparece cara. Determinar la esperanza matemática del juego y si éste es favorable.
E = {(c,c);(c,x);(x,c);(x,x)}
p(+1) = 2/4
p(+2) = 1/4
p(−5) = 1/4
E(x)= 1 · 2/4 + 2 · 1/4 - 5 · 1/4 = 1/4.

Es desfavorable
Desviación estándar
La desviación estándar (σ) mide cuánto se separan los datos.
La fórmula es fácil: es la raíz cuadrada de la varianza. Así que, "¿qué es la varianza?"

Varianza
La varianza (que es el cuadrado de la desviación estándar: σ2) se define así:
Es la media de las diferencias con la media elevadas al cuadrado.
En otras palabras, sigue estos pasos:
  1.  Calcula la media (el promedio de los números)
  2. Ahora, por cada número resta la media y eleva el resultado al cuadrado (la diferencia elevada al cuadrado). 
  3. Ahora calcula la media de esas diferencias al cuadrado. 

EJEMPLO

Tú y tus amigos han medido las alturas de sus perros (en milímetros):









Las alturas (de los hombros) son: 600mm, 470mm, 170mm, 430mm y 300mm.Calcula la media, la varianza y la desviación estándar.

Respuesta:

Media =
  
600 + 470 + 170 + 430 + 300  =

1970  = 394
  
Descripción: http://www.disfrutalasmatematicas.com/images/b.gif
Descripción: http://www.disfrutalasmatematicas.com/images/b.gif
                      5
  5




así que la altura media es 394 mm. Vamos a dibujar esto en el gráfico:










Para calcular la varianza, toma cada diferencia, elévala al cuadrado, y haz la media:
Varianza: σ2 =  
2062 + 762 + (-224)2 + 362 + (-94)2
  =  
108,520
  
= 21,704

Descripción: http://www.disfrutalasmatematicas.com/images/b.gif
Descripción: http://www.disfrutalasmatematicas.com/images/b.gif
                          5
      5


Así que la varianza es 21,704.
Y la desviación estándar es la raíz de la varianza, así que:
Desviación estándar: σ = √21,704 = 147
Propiedades de la varianza
Si X es una variable aleatoria con función de probabilidad o densidad f(x), la varianza de una función de la variable X , m(x) , se calcula según la expresión:


Casos concretos:
1.      Cuando a todos los valores de una variable se les suma una constante, la varianza de la variable conserva el mismo valor (ver imagen en las propiedades de la media)


2.      Cuando a todos los valores de una variable se les multiplica por una constante, la varianza de la variable queda multiplicada por el valor de la constante elevado al cuadrado (ver imagen en las propiedades de la media)


3.      Si X e Y son dos variables aleatorias con función de densidad o probabilidad conjunta f(x,y), la varianza de la función m(x,y) = a X ± b Y, donde a y b son constantes reales se calcula como:


En el caso de que a = b = 1   
Si además ocurre que X e Y sean independientes σxy = 0 , luego


Fuente Georgia
Tamaño Normal.

Comentarios

Entradas populares de este blog

semana 9 medidas de Forma cesgo, asimetria, curtosis.

Medidas de tendencia no central percentiles, deciles, cuartiles.

Presentación de datos de una sola variable